首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2179篇
  免费   248篇
  国内免费   298篇
测绘学   19篇
大气科学   180篇
地球物理   621篇
地质学   699篇
海洋学   218篇
天文学   675篇
综合类   37篇
自然地理   276篇
  2024年   7篇
  2023年   12篇
  2022年   25篇
  2021年   52篇
  2020年   71篇
  2019年   73篇
  2018年   53篇
  2017年   61篇
  2016年   52篇
  2015年   61篇
  2014年   56篇
  2013年   117篇
  2012年   67篇
  2011年   151篇
  2010年   142篇
  2009年   173篇
  2008年   204篇
  2007年   162篇
  2006年   126篇
  2005年   150篇
  2004年   125篇
  2003年   102篇
  2002年   86篇
  2001年   73篇
  2000年   88篇
  1999年   82篇
  1998年   72篇
  1997年   46篇
  1996年   30篇
  1995年   40篇
  1994年   22篇
  1993年   19篇
  1992年   21篇
  1991年   11篇
  1990年   10篇
  1989年   14篇
  1988年   15篇
  1987年   7篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2725条查询结果,搜索用时 93 毫秒
1.
西藏林周县是我国大骨节病(KBD)患病较为严重的地区之一,本文将林周县作为研究区,通过使用地理探测器(GeoDetector)量化分析KBD患病率风险因子的影响,并使用环境化学方法验证空间分析结果。通过对10个潜在影响因子的分析以及对当地KBD患病村和非患病村的土壤-水-粮食-人这一生物地球化学循环的环境化学分析,结果表明:(1)林周县KBD由一组多重且交互作用的环境影响因子共同作用影响,其中最重要的控制因子是地层因子;(2)所有环境介质(土壤、水、谷物)及人体组织中的硒元素浓度在KBD患病区均低于非患病区;(3)当地居民对硒和铬的摄入严重不足,尤其是KBD患病村中居民硒元素平均日摄入量(ADD)大约仅为世界卫生组织(WHO)建议的成人基本摄入量下限的4%;(4)我们推测,当地居民患病主要是由于地层这一影响因子,这是由于通过生态系统的迁移转化导致当地人口严重硒缺乏,最终导致地方性生物地球化学硒缺乏。  相似文献   
2.
3.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
4.
Radiative lifetime measurements were performed with time-resolved laser-induced fluorescence techniques for 24 levels of Nd  ii in the energy range 20 500–32 500 cm−1. For 17 levels, no previous experimental data exist. These results have allowed the testing of new theoretical calculations with the relativistic Hartree–Fock method taking configuration interactions and core-polarization effects into account, and a satisfying agreement has been found for this complex ion. A new set of calculated oscillator strengths, accurate within a few per cent for the strongest transitions, is presented for 107 lines of astrophysical interest appearing in the wavelength range 358.0–1100.0 nm. These results will be useful to evaluate abundance values of neodymium in chemically peculiar stars in relation with cosmochronology.  相似文献   
5.
The interaction of carbon monoxide (CO) with vapour-deposited water(H2O) ices has been studied using temperature programmed desorption (TPD) and Fourier transform reflection-absorption infrared spectroscopy (FT-RAIRS) over a range of astrophysically relevant temperatures. Such measurements have shown that CO desorption from amorphous H2Oices is a much more complex process than current astrochemical models suggest. Re-visiting previously reported laboratory experiments (Collings et al., 2003), a rate model has been constructed to explain, in a phenomenological manner, the desorption of CO over astronomically relevant time scales. The model presented here can be widely applied to a range of astronomical environments where depletion of CO from the gas phase is relevant. The model accounts for the two competing processes of CO desorption and migration, and also enables the entrapment of some of the CO in the ice matrix and its subsequent release as the water ice crystallises and then desorbs. The astronomical implications of this model are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
7.
8.
Calculations are made of the resonance contribution to electron-impact excitation of H-like 13C and Li-like 23Na, 25Mg, 27Al and 29Si to the upper hyperfine levels that produce millimetre (mm) lines of likely astrophysical interest. The resonance contribution is found to be very important for these Li-like ions, considerably more important than for Li-like 57Fe considered previously. However, resonances are found to be rather unimportant for H-like 13C. The effect of radiative decay on the resonance contribution is found to be insignificant in all of the present calculations.  相似文献   
9.
A model is proposed for the formation of water ice mantles on grains in interstellar clouds. This occurs by direct accretion of monomers from the gas, be they formed by gas or surface reactions. The formation of the first monolayer requires a minimum extinction of interstellar radiation, sufficient to lower the grain temperature to the point where thermal evaporation of monomers is just offset by monomer accretion from the gas. This threshold is mainly determined by the adsorption energy of water molecules on the grain material; for hydrocarbon material, chemical simulation places this energy between 0.5 and 2 kcal mol−1, which sets the (true) visible extinction threshold at a few magnitudes. However, realistic distributions of matter in a cloud will usually add to this an unrelated amount of cloud core extinction, which can explain the large dispersion of observed (apparent) thresholds. Once the threshold is crossed, all available water molecules in the gas are quickly adsorbed, because the grain cools down and the adsorption energy on ice is higher than on bare grain. The relative thickness of the mantle, and, hence, the slope of  τ3( A v)  depend only on the available water vapour, which is a small fraction of the oxygen abundance. Chemical simulation was also used to determine the adsorption sites and energies of O and OH on hydrocarbons and study the dynamics of formation of water molecules by surface reactions with gaseous H atoms, as well as their chances to stick in situ.  相似文献   
10.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号